AP COMPUTER SCIENCE
JAVA CONCEPTS I: LANGUAGE OVERVIEW

PAUL L. BAILEY

1. DATA

1.1. Classes and Objects. Java is an object oriented language. This means that
programs are organized around objects and their relationship to each other.

A class is a template for an object. A class is like the blueprint for a house: you
can build a lot of houses with the same blueprint. In Java (like C#, but unlike C
and C++), essentially all of the source code resides inside some class. An outline
for the source code which defines a class looks like this:

public class ClassName extends ParentClassName

{
// Fields
// Constructors
// Methods

}

Here, ClassName is the name of the class. The class ClassName inherits from class
ParentClassName. This means that all of the fields and methods that are available
ParentClassName are available for ClassName.

A object is an instance of a class. When an object of a given class is created, we
say the object instantiates the class.

A field is an instance variable; this stores information related to the object. A
constructor is a block of code that tells how to create an object of this class. A
method is a labeled block of code (analogous to a function in C) which dictates the
behavior of objects in this class.

Date: August 20, 2019.



1.2. Variables. Variables are names associated to data that is stored in the com-
puter’s memory.

1.2.1. Kinds of Variables. There are fours kinds of variables in Java:

e Parameters are passed to a method in its signature;

e Local variables are declared inside of a block of code inside of a method;

e Instance variables are declared inside a class, outside of a method, and are
specific to an object;

e Static variables are declared inside a class, outside of a method, and are
specific to the class.

1.2.2. Categories of Variables. There are two main categories of variables in Java:

o Value variables contain the value of the variable itself. These are also called
primitive variables because they are variables which hold the primitive types
boolean and the numeric types.

e Reference variables contain a reference to an object.

1.2.3. Types of Variables. There are several primitive types of variables in Java.
The numeric types are the integral types and the floating-point types. The integral
types are byte, short, int, and long, whose values are 8-bit, 16-bit, 32-bit and
64-bit signed two’s-complement integers, respectively, and char, whose values are
16-bit unsigned integers representing UTF-16 code units (§3.1). The floating-point
types are float, whose values include the 32-bit IEEE 754 floating-point numbers,
and double, whose values include the 64-bit IEEE 754 floating-point numbers. The
boolean type has exactly two values: true and false.

1.3. Literals. Literal values are also typed, but are not given a name and are wired
into the code. For example:

e Ina = 1, ais a variable and 1 is a literal integer.
e In s = "This is a test", s is a variable and "This is a test" is a
literal string.

2. CODE

2.1. Operators. An operator takes one (unary), two (binary), or three (ternary)
values and produces one value. Typically, in the code, an operator appears as
one or two punctuation characters. The values are either variables or literals. For
example:

la // NOT a Logical unary operator

-a // NEGATIVE a Arithmetic unary operator
a+b // a PLUS b Arithmetic binary operator
a== // a EQUALS b Relational binary operator

2.2. Expressions. An expression is a sequence of values joined by operators and
parentheses. The expression is evaluated, which means it is reduced to one value.
For example:

(a+b) *c // Evaluated numerically depending on the types of a,b,c
(atb)*c == 12 // Evaluated logically to either true or false



2.3. Blocks. A code block is a sequence of statements surrounded by braces. State-
ments are terminated by semicolons, or by code blocks. A statement is either a
declaration, an expression, or a flow control statement. For example:

{
int i = 1;
i=1i+ 2;
print(i);
if (i > 3)
{

i=2;

}

}

// Begin block

// Declaration of a variable

// Expression

// Method calls are considered expressions

// Start of flow control statement

// Begin subblock within flow control statement

// End subblock, and end of flow control statement
// End block

2.4. Methods. A method is a code block with a label. A method declaration is the
set of code in the program which declares the method. Method declarations have

six components, in order:

e Modifiers, such as public, private, static and others.

e Return type, which is the data type of the value returned by the method,
or void if the method does not return a value.

e Method name, which allows other parts of program to call the method.

e Parameter list, a comma-delimited list of input parameters, preceded by
their data types, enclosed by parentheses, (). If there are no parameters,
you must use empty parentheses.

e Fxception list, to be discussed later.

e Method body, a block of code which is executed when the method is called.

The method signature consists of the method name and parameter list. Methods
with different signatures are different methods. In particular, it is allowable to use
the same name more than once, as long as the parameter list is different. This is
known as method overloading, and is a form of polymorphism.

The most common access modifiers are

e public - the field or method is accessible by any class
e private - the field or method is accessible only within the class in which

it is defined

e protected - the field or method is accessible within the class or within any
class which extends it, but not elsewhere

The static modifier states that the method is a class method, and does not
require an instance of an object to be used. Lack of the static modifier indicates
that the method is an instance method, and lives within a given object.



3. EXAMPLES

The Greenfoot IDE helps students build games. We built a game with crabs in
a world which is modeled after Michael Kolling’s Joy Of Code tutorial. See

https://www.greenfoot.org/doc/joy-of-code.

We illustrate these concepts with a sample of a Crab class.

public class Crab extends Animal

{
private int score = 0;
public void act()
{
move(3);
stagger();
ricochet();
control();
}
public void addPoints(int points)
{
score += points;
World world = getWorld();
Counter counter = (Counter)world.getObjects(Counter.class).get(0);
counter.setValue(score) ;
}
}

In this case, the class Crab inherits from its parent class, Animal. This means
that a Crab contains all the fields and methods of an Animal.

The score variable is a field of the Crab class.

The act and addPoints functions are instance methods of the Crab class.

Consider the line which says

public void addPoints(int points);

The addPoints method has public accessibility and a void return type, which
means it does not return anything. It take one parameter points of type int;
this means that points may be used within the body of the method like any other
variable. It is also possible for methods to have more than one parameter.

In the addPoints method, two local variables are declared; world of type World,
and counter of type Counter. These are both reference types. Also in this method,
the instance variable score is used. Note how the variables score, points, and
counter are of three different types.

The question may arise whether or not parameters should be considered as local
variables. Some references refer to parameters as a subcategory of local variables,
and some refer to them as a separate category. In any case, local variables and
parameters behave the same way in the body of the code of a method.

DEPARTMENT OF MATHEMATICS, BASIS SCOTTSDALE
Email address: paul.bailey@basised.com



